
Tryton Payment Gateway
Documentation

Release 3.0.1.0dev1

Openlabs

January 03, 2014

Contents

i

ii

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

Contents:

Contents 1

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

2 Contents

CHAPTER 1

Introduction

The payment-gateway module offers a flexible payments model which allows multiple payment gateways to co-exist
in a single Tryton database. The logic for storing payment profile and transactions are decoupled from the gateway
specific implementation itself making it easy to create custom payment gateways with their own processing logic and
feature sets.

1.1 Payment Gateway

Payment gateway represents a specific method of payment by a specific provider (like Authorize.net, Paypal etc.).
Each payment gateway may require additional configuration settings specific to it.

3

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

1.1.1 Adding payment gateway

See PaymentGateway.

1.2 Payment Profile - Store Credit Card data

Several payment gateway service providers offer a secure way to store confidential customer credit card information
on their server. Transactions can then be processed against these profiles without the need to recollect payment
information from the customer, and without the need to store confidential credit card information in Tryton.

This model represents a profile thus stored with any of the third party providers. The module only stores the last
4 digits and expiration date in the database. Remaining confidential information is stored on the payment service
providers server and a reference to the same is stored in the provider_reference field.

4 Chapter 1. Introduction

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

See PaymentProfile.

1.2. Payment Profile - Store Credit Card data 5

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

1.3 Payment Transaction

The transaction model stores and tracks payments that are made using the payment gateways.

When a transaction is created, it is assigned a unique uuid.uuid4(). This is used as transaction reference when
transactions are sent to payment gateways. Without this identifier, some providers mistakenly report duplicate pay-
ments.

See PaymentTransaction.

1.3.1 States of a Transaction

State Description
Draft The transaction is just being filled by the user. This is the default state where every transaction begins
In
Progress

Some gateways do not immediately return a success of failure of a transaction. Such transactions could
be moved to the in-progress state and the status of the transaction is queried later to see if the transaction
succeeded or failed.

Failed The transaction failed. The reasons can be seen from the logs.
Au-
tho-
rized

The transaction has been authorized, but not settled.

Com-
pleted

The transaction has been captured, but the account moves itself, has not been created within Tryton.

Posted The transaction is complete and the necessary account moves have also been created.
Can-
celed

The transaction was cancelled.

6 Chapter 1. Introduction

http://docs.python.org/2.7/library/uuid.html#uuid.uuid4

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

1.3.2 Transaction using card

1.3. Payment Transaction 7

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

1.3.3 Transaction using payment profile

1.3.4 Safe Posting

Completion of a successful payment gateway transaction also includes creating the corresponding accounting entries
in Tryton. But, creation of account move requires a journal with proper debit and credit accounts (not required

8 Chapter 1. Introduction

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

when the journal is created) and a fiscal period to exist on the date of the transaction. Hence, if the system was to
make the account move along with the transaction capture or authorization, it could lead to inconsistencies since the
capture/authorize could have already been completed on the payment gateway but the creation of account move might
result in the failure of the entire transaction change.

To solve the problem, the design introduces a completed stage during which no account moves are created. This state
makes a transition with minimal scope for error (a single state field is update), to be available. This is important since
a transaction rollback due to any error could lead to Tryton having an inconsistent state of the transaction compared to
the gateway.

In addition to this the transaction model offers a safe_post() method which tries to post the transaction, but leaves
the transaction in the current state on failure. The user could later look into the completed transaction and post them
manually.

1.4 Payment Transaction Log

The transaction log model stores responses from the payment service provider. When a response is is received from
a payment service provider, it could be passed onto TransactionLog.serialize_and_create(), which
would then serialize the response object as YAML and store it. The responses can be useful in identifying the reason
why a transaction may have failed.

1.4. Payment Transaction Log 9

http://en.wikipedia.org/wiki/YAML

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

10 Chapter 1. Introduction

CHAPTER 2

Writing a payment gateway module

This is a developer guide for programmers wanting to write a payment_gateway for a payment provider. This guide
assumes a beginner level of expertise in writing modules for Tryton.

The examples in the case use Authorize.net as an example. The completely built module can be seen on github
(payment-gateway-authorize-net).

2.1 Step 0: Identify a qualified name for the provider

To keep the code simple, the payment-gateway module appends the name of the provider to method names and expects
them to exist in the models. This requires that you use a consistent provider name which can also be a valid identifier
in python.

In this example the provider name chosen is authorize_net for Authorize.net. Though it is not a requirement, the
identifier is all in small case as python identifiers are case sensitive and method names by coding convention use small
case.

2.2 Step 1: Setup the payment gateway fields for configuration

Every payment gateway has a different way of authentication and requirements. Hence, the only common component
the base module offers you is a test boolean field if the gateway is working in a test mode or production.

2.2.1 Add provider name to providers selection list

As you can see in the code above, the fields’ properties are based on the value of the provider field which is a
trytond.model.fields.Selection in which the options are returned by the get_providers() method.
So the code also needs to inject authorize_net as an option.:

@classmethod
def get_providers(cls, values=None):

"""
Add authorize_net as a provider option.
"""
rv = super(PaymentGatewayAuthorize, cls).get_providers()
authorize_record = (’authorize_net’, ’Authorize.net’)

11

https://github.com/openlabs/payment-gateway-authorize-net
http://doc.tryton.org/3.0/trytond/doc/ref/models/fields.html#trytond.model.fields.Selection

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

if authorize_record not in rv:
rv.append(authorize_record)

return rv

The model also includes a method selection field in which the values are added dynamically based on the chosen
provider. This is achieved using the selection_change_with functionality of selection fields.:

def get_methods(self):
if self.provider == ’authorize_net’:

return [
(’credit_card’, ’Credit Card - Authorize.net’),

]
return super(PaymentGatewayAuthorize, self).get_methods()

The currently recognised types and the special features attached to them are:

Method
name

Description

credit_card When credit card is the method chosen, the payment transaction form shows the Enter Credit Card
button. Other methods are considered as off-line payment methods, with no special functionality
attached to it.

Note: Future versions of the module may support additional methods like Electronic Bill payments (EBP) and
Automated Clearing House (ACH) which works like electronic versions of cheques.

2.2.2 Add gateway specific fields to the model

Authorize.net requires a login and transaction_key to interact with it’s web service API. So the two fields can be
created into the payment_gateway.gateway module:

class PaymentGatewayAuthorize:
__name__ = ’payment_gateway.gateway’

authorize_net_login = fields.Char(
’API Login’, states={

’required’: Eval(’provider’) == ’authorize_net’,
’invisible’: Eval(’provider’) != ’authorize_net’,

}, depends=[’provider’]
)
authorize_net_transaction_key = fields.Char(

’Transaction Key’, states={
’required’: Eval(’provider’) == ’authorize_net’,
’invisible’: Eval(’provider’) != ’authorize_net’,

}, depends=[’provider’]
)

Tip: The states make the field appear only when the chosen provider is Authorize.net. The fields are also required
only when Authorize.net is the gateway.

2.2.3 Add the fields to the view

The fields above will not be available on the view of the gateway unless explicitly added using XML. The base module
provides an empty notebook into which pages can be added which are displayed based on the value of the provider
selection field.

12 Chapter 2. Writing a payment gateway module

http://doc.tryton.org/3.0/trytond/doc/ref/models/fields.html#trytond.model.fields.Reference.selection_change_with

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

<!-- XML record for the view which inherits gateway form view -->
<record model="ir.ui.view" id="gateway_view_form">

<field name="model">payment_gateway.gateway</field>
<field name="inherit" ref="payment_gateway.gateway_view_form"/>
<field name="name">gateway_form</field>

</record>

And the view code could be something like:

<?xml version="1.0"?>
<data>

<xpath expr="/form/notebook" position="inside">
<page string="Authorize.net Settings" id="authorize_net"

states="{’invisible’: Eval(’provider’) != ’authorize_net’}">
<label name="authorize_net_login"/>
<field name="authorize_net_login"/>
<label name="authorize_net_transaction_key"/>
<field name="authorize_net_transaction_key"/>

</page>
</xpath>

</data>

Note: The empty notebook in the original view (payment_gateway.gateway_view_form) in the xpath /form/notebook
offers a simple way to add payment gateway specific configuration fields on a separate notebook page which is visible
only when the gateway which defines them is chosen.

2.3 Step 2: Add Methods for transactions

Payment gateway transaction usually involve the following operations. The method names used for the same are also
highlighted in the table.

Op-
era-
tion

Description Pre-
fix

Example

Au-
tho-
riza-
tion

Authorization hold (also card authorization, preauthorization, or preauth) is the
practice within the banking industry of authorizing electronic transactions done
with a debit card or credit card and holding this balance as unavailable either until
the merchant clears the transaction (also called settlement), or the hold “falls off.”

au-
tho-
rize_

autho-
rize_authorize_net

Settle Credit card settlement is the process by which authorized transactions are
submitted to card issuers for payment.

set-
tle_

set-
tle_authorize_net

Cap-
ture

Capture is the process of performing an authorization and settlement at once
without having separate steps.

cap-
ture_

cap-
ture_authorize_net

Retry When a transaction fails some gateways offer the option to retry the transaction
which failed.

retry_ retry_authorize_net

Up-
date

Update the transaction status. up-
date_

up-
date_authorize_net

Can-
cel

Cancel an authorization can-
cel_

can-
cel_authorize_net

Not all of the above methods need to be implemented for a gateway to be useful. The capture method is a minimum
requirement for a functional gateway.

Note: This example uses a third party python module called authorize_sause to interact with authorize.net.

2.3. Step 2: Add Methods for transactions 13

https://www.chasepaymentech.com/the_basics.html
https://www.chasepaymentech.com/the_basics.html
https://www.chasepaymentech.com/the_basics.html
http://authorize-sauce.readthedocs.org/en/latest/

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

2.3.1 Authorization

authorize_authorize_net([card_info])
Authorize the current transaction with the card (if provided) or the payment_profile.

Parameters card_info – An instance of CreditCardView

Raises UserError If card and profile are missing.

This instance method receives the transaction to be authorized as its instance (self) and optionally card_info if a card
was entered for the transaction to be processed. The card_info is available only when the transaction processed using
a card. Alternatively, a previously stored payment profile could have been specified in the payment_profile field:

def authorize_authorize_net(self, card_info=None):
"""
Authorize using authorize.net for the specific transaction.

:param credit_card: An instance of CreditCardView
:raises UserError: If card and profile are missing.
"""
TransactionLog = Pool().get(’payment_gateway.transaction.log’)

client = self.gateway.get_authorize_client()

A hack to inject the currency paramater into base_params of the
authorize sause transaction API since the implementation iself
does not offer a better way of handling currency
client._transaction.base_params[’x_currency_code’] = self.currency.code

if card_info:
Card information is specified, so create a Credit Card
cc = CreditCard(

card_info.number,
card_info.expiry_year,
card_info.expiry_month,
card_info.csc,
card_info.owner,

)
credit_card = client.card(cc)

elif self.payment_profile:
A stored payment profile is used to process the transaction.
Use the saved card instead
credit_card = client.saved_card(

self.payment_profile.provider_reference
)

else:
self.raise_user_error(’no_card_or_profile’)

try:
try to authorize the card for the amount in the transaction
result = credit_card.auth(self.amount)

except AuthorizeResponseError, exc:
This error is raised when Authorize.net returns an error
response
self.state = ’failed’
self.save()

14 Chapter 2. Writing a payment gateway module

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

The full response of the error is part of the exception
raised, store that in the logs for easy debugging.
TransactionLog.serialize_and_create(self, exc.full_response)

else:
the authorization was succesful, so set the state and save
self.state = ’authorized’
self.provider_reference = str(result.uid)
self.save()

Save the full response either way into the logs
TransactionLog.serialize_and_create(self, result.full_response)

2.3.2 Settle

settle_authorize_net()
Settle the current transaction for the full amount.

This instance method receives the transaction to be authorized as its instance (self). On being called it attempts to
settle the complete amount of the transaction with the service provider. Future versions may support the ability to have
partial settlements.:

def settle_authorize_net(self):
"""
Settles this transaction if it is a previous authorization.
"""
TransactionLog = Pool().get(’payment_gateway.transaction.log’)

client = self.gateway.get_authorize_client()

A hack to inject the currency paramater into base_params of the
authorize sause transaction API since the implementation iself
does not offer a better way of handling currency
client._transaction.base_params[’x_currency_code’] = self.currency.code

auth_net_transaction = client.transaction(self.provider_reference)
try:

Try to settle the transaction
result = auth_net_transaction.settle()

except AuthorizeResponseError, exc:
This error is raised whn Authorize.net returns an error
response
self.state = ’failed’
self.save()
TransactionLog.serialize_and_create(self, exc.full_response)

else:
Mark the transaction as completed.
self.state = ’completed’
self.provider_reference = str(result.uid)
self.save()
TransactionLog.serialize_and_create(self, result.full_response)

Try to post the transaction
self.safe_post()

Tip: The safe_post() method is a helper which tries to post the transaction, but on failure, it ignores the attempt
without an error. This is important as an error at this stage would mean the transaction state being changed on the

2.3. Step 2: Add Methods for transactions 15

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

service provider while tryton may not have the right status because the error caused a rollback.

2.3.3 Capture

capture_authorize_net([card_info])
Capture and complete the current transaction with the card (if provided) or the payment_profile.

Parameters card_info – An instance of CreditCardView

Raises UserError If card and profile are missing.

This instance method receives the transaction to be authorized as its instance (self) and optionally card_info if a card
was entered for the transaction to be processed. The card_info is available only when the transaction processed using
a card. Alternatively, a previously stored payment profile could have been specified in the payment_profile field:

def capture_authorize_net(self, card_info=None):
"""
Capture using authorize.net for the specific transaction.

:param card_info: An instance of CreditCardView
"""
TransactionLog = Pool().get(’payment_gateway.transaction.log’)

client = self.gateway.get_authorize_client()

A hack to inject the currency paramater into base_params of the
authorize sause transaction API since the implementation iself
does not offer a better way of handling currency
client._transaction.base_params[’x_currency_code’] = self.currency.code

if card_info:
cc = CreditCard(

card_info.number,
card_info.expiry_year,
card_info.expiry_month,
card_info.csc,
card_info.owner,

)
credit_card = client.card(cc)

elif self.payment_profile:
A stored payment profile is used to process the transaction.
Use the saved card instead
credit_card = client.saved_card(

self.payment_profile.provider_reference
)

else:
self.raise_user_error(’no_card_or_profile’)

try:
result = credit_card.capture(self.amount)

except AuthorizeResponseError, exc:
self.state = ’failed’
self.save()
TransactionLog.serialize_and_create(self, exc.full_response)

else:
self.state = ’completed’
self.provider_reference = str(result.uid)

16 Chapter 2. Writing a payment gateway module

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

self.save()
TransactionLog.serialize_and_create(self, result.full_response)
self.safe_post()

2.3.4 Cancel

cancel_authorize_net()
Cancel the current transaction authorization.

With authorize.net cancellation Voids a previous authorization that has not yet been settled:

def cancel_authorize_net(self):
"""
Cancel this authorization or request
"""
TransactionLog = Pool().get(’payment_gateway.transaction.log’)

if self.state != ’authorized’:
self.raise_user_error(’cancel_only_authorized’)

client = self.gateway.get_authorize_client()
client._transaction.base_params[’x_currency_code’] = self.currency.code

auth_net_transaction = client.transaction(self.provider_reference)

Try to void the transaction
result = auth_net_transaction.void()

Mark the state as cancelled
self.state = ’cancel’
self.save()

TransactionLog.serialize_and_create(self, result.full_response)

2.4 Step 3: Add support for payment profiles (Optional)

If the gateway you are writing supports storing confidential credit card information for later use, the provider could be
added to the supported providers for maintaining payment profiles of parties.

The addition of a payment profile is expected to add the card to the payment provider’s vault and return a unique
reference to it which is stored in provider_reference field.

2.4.1 Add provider to selection field

Extend the party.payment_profile.add_view model to add the provider identifier as an option in the providers selection
field:

class AddPaymentProfileView:
__name__ = ’party.payment_profile.add_view’

@classmethod
def get_providers(cls):

"""
Return the list of providers who support credit card profiles.

2.4. Step 3: Add support for payment profiles (Optional) 17

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

"""
res = super(AddPaymentProfileView, cls).get_providers()
res.append((’authorize_net’, ’Authorize.net’))
return res

2.4.2 Implement transition_add method

The AddPaymentProfile wizard offers a form to the user to fill up confidential information which is then sent to
the server.

The API requires that a transition_add_<provider_identifier> method be available which should create the card on
the payment provider’s server and save the reference to the provider_reference.

A convenience method PaymentProfile.create_profile() creates a new profile and returns the active
record of the created profile, when called with the payment provider’s reference as an argument:

class AddPaymentProfile:
"""
Add a payment profile
"""
__name__ = ’party.party.payment_profile.add’

def transition_add_authorize_net(self):
"""
Handle the case if the profile should be added for authorize.net
"""
card_info = self.card_info

client = card_info.gateway.get_authorize_client()
cc = CreditCard(

card_info.number,
card_info.expiry_year,
card_info.expiry_month,
card_info.csc,
card_info.owner,

)
address = Address(

card_info.address.street,
card_info.address.city,
card_info.address.zip,
card_info.address.country.code,

)
saved_card = AuthorizeCreditCard(

client,
credit_card=cc,
address=address,
email=card_info.party.email

)
saved_card = saved_card.save()
self.create_profile(saved_card.uid)

return ’end’

18 Chapter 2. Writing a payment gateway module

CHAPTER 3

API Reference

Payment Gateway Transaction

copyright

3. 2013-2014 by Openlabs Technologies & Consulting (P) Ltd.

license BSD, see LICENSE for more details

3.1 payment_gateway.gateway

transaction.PaymentGateway
alias of payment_gateway.gateway

3.1.1 Fields

PaymentGateway.name
Define a char field (unicode).

PaymentGateway.journal
Define many2one field (int).

PaymentGateway.provider
Define a selection field (str).

PaymentGateway.method
Define a selection field (str).

PaymentGateway.test
Define a boolean field (True or False).

3.1.2 Methods

classmethod PaymentGateway.get_providers()
Downstream modules can add to the list

19

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

3.2 payment_gateway.transaction

transaction.PaymentTransaction
alias of payment_gateway.transaction

3.2.1 Fields

PaymentTransaction.uuid
Define a char field (unicode).

PaymentTransaction.provider_reference
Define a char field (unicode).

PaymentTransaction.date
Define a date field (date).

PaymentTransaction.company
Define many2one field (int).

PaymentTransaction.party
Define many2one field (int).

PaymentTransaction.payment_profile
Define many2one field (int).

PaymentTransaction.address
Define many2one field (int).

PaymentTransaction.amount
Define a numeric field (decimal).

PaymentTransaction.currency
Define many2one field (int).

PaymentTransaction.gateway
Define many2one field (int).

PaymentTransaction.provider
Define function field (any).

PaymentTransaction.method
Define function field (any).

PaymentTransaction.move
Define many2one field (int).

PaymentTransaction.logs
Define one2many field (list).

PaymentTransaction.state
Define a selection field (str).

3.2.2 Methods

PaymentTransaction.safe_post()
If the initial configuration including defining a period and journal is not completed, marking as done could fail.
In such cases, just mark as in-progress and let the user to manually mark as done.

Failing would otherwise rollback transaction but its not possible to rollback the payment

20 Chapter 3. API Reference

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

3.3 payment_gateway.transaction.log

transaction.TransactionLog
alias of payment_gateway.transaction.log

3.3.1 Methods

classmethod TransactionLog.serialize_and_create(transaction, data)
Serialise a given object and then save it as a log

Parameters

• transaction – The transaction against which the log needs to be saved

• data – The data object that needs to be saved

3.4 party.payment_profile

transaction.PaymentProfile
alias of party.payment_profile

3.4.1 Fields

PaymentProfile.party
Define many2one field (int).

PaymentProfile.address
Define many2one field (int).

PaymentProfile.gateway
Define many2one field (int).

PaymentProfile.provider_reference
Define a char field (unicode).

PaymentProfile.last_4_digits
Define a char field (unicode).

PaymentProfile.expiry_month
Define a selection field (str).

PaymentProfile.expiry_year
Define an integer field (int).

3.5 Wizard: party.party.payment_profile.add

transaction.AddPaymentProfile
alias of party.party.payment_profile.add

3.3. payment_gateway.transaction.log 21

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

3.5.1 Methods

AddPaymentProfile.create_profile(provider_reference)
A helper function that creates a profile from the card information that was entered into the View of the wiz-
ard. This helper could be called by the method which implement the API and wants to create the profile with
provider_reference.

Parameters provider_reference – Value for the provider_reference field.

Returns Active record of the created profile

22 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

23

Tryton Payment Gateway Documentation, Release 3.0.1.0dev1

24 Chapter 4. Indices and tables

Python Module Index

t
transaction, ??

25

