

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

Welcome to Tryton Payment Gateway’s documentation!

Contents:

	Introduction
	Payment Gateway

	Payment Profile - Store Credit Card data

	Payment Transaction

	Payment Transaction Log

	Writing a payment gateway module
	Step 0: Identify a qualified name for the provider

	Step 1: Setup the payment gateway fields for configuration

	Step 2: Add Methods for transactions

	Step 3: Add support for payment profiles (Optional)

	API Reference
	payment_gateway.gateway

	payment_gateway.transaction

	payment_gateway.transaction.log

	party.payment_profile

	Wizard: party.party.payment_profile.add

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

Introduction

The payment-gateway module offers a flexible payments model which allows
multiple payment gateways to co-exist in a single Tryton database. The
logic for storing payment profile and transactions are decoupled from the
gateway specific implementation itself making it easy to create custom
payment gateways with their own processing logic and feature sets.

Payment Gateway

Payment gateway represents a specific method of payment by a specific
provider (like Authorize.net, Paypal etc.). Each payment gateway may
require additional configuration settings specific to it.

[image: _images/payment-gateways.png]

Adding payment gateway

[image: _images/payment-gateways-add.png]
See PaymentGateway.

Payment Profile - Store Credit Card data

Several payment gateway service providers offer a secure way to store
confidential customer credit card information on their server.
Transactions can then be processed against these profiles without the need
to recollect payment information from the customer, and without the need
to store confidential credit card information in Tryton.

This model represents a profile thus stored with any of the third party
providers. The module only stores the last 4 digits and expiration date in the
database. Remaining confidential information is stored on the payment service
providers server and a reference to the same is stored in the
provider_reference field.

[image: _images/payment-profiles.png]
[image: _images/payment-profile-add.png]
See PaymentProfile.

Payment Transaction

The transaction model stores and tracks payments that are made using the
payment gateways.

When a transaction is created, it is assigned a unique uuid.uuid4() [http://docs.python.org/2.7/library/uuid.html#uuid.uuid4].
This is used as transaction reference when transactions are sent to payment
gateways. Without this identifier, some providers mistakenly report
duplicate payments.

See PaymentTransaction.

States of a Transaction

	State
	Description

	Draft
	The transaction is just being filled by the user.
This is the default state where every transaction begins

	In Progress
	Some gateways do not immediately return a success of
failure of a transaction. Such transactions could be moved
to the in-progress state and the status of the transaction
is queried later to see if the transaction succeeded or
failed.

	Failed
	The transaction failed. The reasons can be seen from the
logs.

	Authorized
	The transaction has been authorized, but not settled.

	Completed
	The transaction has been captured, but the account moves
itself, has not been created within Tryton.

	Posted
	The transaction is complete and the necessary account
moves have also been created.

	Canceled
	The transaction was cancelled.

Transaction using card

[image: _images/payment-transaction-enter-card.png]
[image: _images/payment-transaction-use-card.png]

Transaction using payment profile

[image: _images/payment-transaction-using-profile.png]

Safe Posting

Completion of a successful payment gateway transaction also includes
creating the corresponding accounting entries in Tryton. But, creation of
account move requires a journal with proper debit and credit accounts (not
required when the journal is created) and a fiscal period to exist on the
date of the transaction. Hence, if the system was to make the account move
along with the transaction capture or authorization, it could lead to
inconsistencies since the capture/authorize could have already been
completed on the payment gateway but the creation of account move might
result in the failure of the entire transaction change.

To solve the problem, the design introduces a completed stage
during which no account moves are created. This state makes a
transition with minimal scope for error (a single state field
is update), to be available. This is important since a transaction
rollback due to any error could lead to Tryton having an inconsistent
state of the transaction compared to the gateway.

In addition to this the transaction model offers a
safe_post() method which tries to
post the transaction, but leaves the transaction in the current state on
failure. The user could later look into the completed transaction and post
them manually.

Payment Transaction Log

The transaction log model stores responses from the payment service
provider. When a response is is received from a payment service provider,
it could be passed onto
TransactionLog.serialize_and_create(), which would
then serialize the response object as YAML [http://en.wikipedia.org/wiki/YAML] and store it. The responses can
be useful in identifying the reason why a transaction may have failed.

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

Writing a payment gateway module

This is a developer guide for programmers wanting to write a
payment_gateway for a payment provider. This guide assumes a beginner
level of expertise in writing modules for Tryton.

The examples in the case use Authorize.net as an example. The completely
built module can be seen on github (payment-gateway-authorize-net [https://github.com/openlabs/payment-gateway-authorize-net]).

Step 0: Identify a qualified name for the provider

To keep the code simple, the payment-gateway module appends the name of
the provider to method names and expects them to exist in the models. This
requires that you use a consistent provider name which can also be a valid
identifier in python.

In this example the provider name chosen is authorize_net for
Authorize.net. Though it is not a requirement, the identifier is all in
small case as python identifiers are case sensitive and method names by
coding convention use small case.

Step 1: Setup the payment gateway fields for configuration

Every payment gateway has a different way of authentication and
requirements. Hence, the only common component the base module offers you
is a test boolean field if the
gateway is working in a test mode or production.

Add provider name to providers selection list

As you can see in the code above, the fields’ properties are based on the
value of the provider field which is a
trytond.model.fields.Selection [http://doc.tryton.org/3.0/trytond/doc/ref/models/fields.html#trytond.model.fields.Selection] in which the options are returned by
the get_providers() method. So the
code also needs to inject authorize_net as an option.:

@classmethod
def get_providers(cls, values=None):
 """
 Add authorize_net as a provider option.
 """
 rv = super(PaymentGatewayAuthorize, cls).get_providers()
 authorize_record = ('authorize_net', 'Authorize.net')
 if authorize_record not in rv:
 rv.append(authorize_record)
 return rv

The model also includes a method selection field in which the values are
added dynamically based on the chosen provider. This is achieved using the
selection_change_with [http://doc.tryton.org/3.0/trytond/doc/ref/models/fields.html#trytond.model.fields.Reference.selection_change_with]
functionality of selection fields.:

def get_methods(self):
 if self.provider == 'authorize_net':
 return [
 ('credit_card', 'Credit Card - Authorize.net'),
]
 return super(PaymentGatewayAuthorize, self).get_methods()

The currently recognised types and the special features attached to them
are:

	Method name
	Description

	credit_card
	When credit card is the method chosen, the
payment transaction form shows the Enter Credit
Card button. Other methods are considered as
off-line payment methods, with no special
functionality attached to it.

Note

Future versions of the module may support additional methods like
Electronic Bill payments (EBP) and Automated Clearing House (ACH)
which works like electronic versions of cheques.

Add gateway specific fields to the model

Authorize.net requires a login and transaction_key to interact with
it’s web service API. So the two fields can be created into the
payment_gateway.gateway module:

class PaymentGatewayAuthorize:
 __name__ = 'payment_gateway.gateway'

 authorize_net_login = fields.Char(
 'API Login', states={
 'required': Eval('provider') == 'authorize_net',
 'invisible': Eval('provider') != 'authorize_net',
 }, depends=['provider']
)
 authorize_net_transaction_key = fields.Char(
 'Transaction Key', states={
 'required': Eval('provider') == 'authorize_net',
 'invisible': Eval('provider') != 'authorize_net',
 }, depends=['provider']
)

Tip

The states make the field appear only when the chosen provider is
Authorize.net. The fields are also required only when Authorize.net is
the gateway.

Add the fields to the view

The fields above will not be available on the view of the gateway unless
explicitly added using XML. The base module provides an empty notebook
into which pages can be added which are displayed based on the value of
the provider selection field.

<!-- XML record for the view which inherits gateway form view -->
<record model="ir.ui.view" id="gateway_view_form">
 <field name="model">payment_gateway.gateway</field>
 <field name="inherit" ref="payment_gateway.gateway_view_form"/>
 <field name="name">gateway_form</field>
</record>

And the view code could be something like:

<?xml version="1.0"?>
<data>
 <xpath expr="/form/notebook" position="inside">
 <page string="Authorize.net Settings" id="authorize_net"
 states="{'invisible': Eval('provider') != 'authorize_net'}">
 <label name="authorize_net_login"/>
 <field name="authorize_net_login"/>
 <label name="authorize_net_transaction_key"/>
 <field name="authorize_net_transaction_key"/>
 </page>
 </xpath>
</data>

Note

The empty notebook in the original view
(payment_gateway.gateway_view_form) in the xpath /form/notebook
offers a simple way to add payment gateway specific configuration
fields on a separate notebook page which is visible only when the
gateway which defines them is chosen.

Step 2: Add Methods for transactions

Payment gateway transaction usually involve the following operations.
The method names used for the same are also highlighted in the table.

	Operation
	Description
	Prefix
	Example

	Authorization
	Authorization hold (also
card authorization,
preauthorization, or
preauth) is the practice
within the banking
industry of authorizing
electronic transactions
done with a debit card
or credit card and
holding this balance
as unavailable either
until the merchant
clears the transaction
(also called
settlement),
or the hold
“falls off.”
	authorize_
	authorize_authorize_net

	Settle [https://www.chasepaymentech.com/the_basics.html]
	Credit card settlement
is the process by which
authorized transactions
are submitted to card
issuers for payment.
	settle_
	settle_authorize_net

	Capture [https://www.chasepaymentech.com/the_basics.html]
	Capture is the process
of performing an
authorization and
settlement at once
without having separate
steps.
	capture_
	capture_authorize_net

	Retry
	When a transaction fails
some gateways offer the
option to retry the
transaction which failed.
	retry_
	retry_authorize_net

	Update
	Update the transaction
status.
	update_
	update_authorize_net

	Cancel
	Cancel an authorization
	cancel_
	cancel_authorize_net

Not all of the above methods need to be implemented for a gateway to be
useful. The capture method is a minimum requirement for a functional
gateway.

Note

This example uses a third party python module called authorize_sause [http://authorize-sauce.readthedocs.org/en/latest/] to interact with
authorize.net.

Authorization

	
authorize_authorize_net([card_info])

	Authorize the current transaction with the card (if provided) or the
payment_profile.

	Parameters:	card_info – An instance of CreditCardView

	Raises UserError:

		If card and profile are missing.

This instance method receives the transaction to be authorized as its
instance (self) and optionally card_info if a card was entered for the
transaction to be processed. The card_info is available only when the
transaction processed using a card. Alternatively, a previously stored
payment profile could have been specified in the
payment_profile field:

def authorize_authorize_net(self, card_info=None):
 """
 Authorize using authorize.net for the specific transaction.

 :param credit_card: An instance of CreditCardView
 :raises UserError: If card and profile are missing.
 """
 TransactionLog = Pool().get('payment_gateway.transaction.log')

 client = self.gateway.get_authorize_client()

 # A hack to inject the currency paramater into base_params of the
 # authorize sause transaction API since the implementation iself
 # does not offer a better way of handling currency
 client._transaction.base_params['x_currency_code'] = self.currency.code

 if card_info:
 # Card information is specified, so create a Credit Card
 cc = CreditCard(
 card_info.number,
 card_info.expiry_year,
 card_info.expiry_month,
 card_info.csc,
 card_info.owner,
)
 credit_card = client.card(cc)
 elif self.payment_profile:
 # A stored payment profile is used to process the transaction.
 # Use the saved card instead
 credit_card = client.saved_card(
 self.payment_profile.provider_reference
)
 else:
 self.raise_user_error('no_card_or_profile')

 try:
 # try to authorize the card for the amount in the transaction
 result = credit_card.auth(self.amount)
 except AuthorizeResponseError, exc:
 # This error is raised when Authorize.net returns an error
 # response
 self.state = 'failed'
 self.save()

 # The full response of the error is part of the exception
 # raised, store that in the logs for easy debugging.
 TransactionLog.serialize_and_create(self, exc.full_response)
 else:
 # the authorization was succesful, so set the state and save
 self.state = 'authorized'
 self.provider_reference = str(result.uid)
 self.save()

 # Save the full response either way into the logs
 TransactionLog.serialize_and_create(self, result.full_response)

Settle

	
settle_authorize_net()

	Settle the current transaction for the full amount.

This instance method receives the transaction to be authorized as its
instance (self). On being called it attempts to settle the complete
amount of the transaction with the service provider. Future versions may
support the ability to have partial settlements.:

def settle_authorize_net(self):
 """
 Settles this transaction if it is a previous authorization.
 """
 TransactionLog = Pool().get('payment_gateway.transaction.log')

 client = self.gateway.get_authorize_client()

 # A hack to inject the currency paramater into base_params of the
 # authorize sause transaction API since the implementation iself
 # does not offer a better way of handling currency
 client._transaction.base_params['x_currency_code'] = self.currency.code

 auth_net_transaction = client.transaction(self.provider_reference)
 try:
 # Try to settle the transaction
 result = auth_net_transaction.settle()
 except AuthorizeResponseError, exc:
 # This error is raised whn Authorize.net returns an error
 # response
 self.state = 'failed'
 self.save()
 TransactionLog.serialize_and_create(self, exc.full_response)
 else:
 # Mark the transaction as completed.
 self.state = 'completed'
 self.provider_reference = str(result.uid)
 self.save()
 TransactionLog.serialize_and_create(self, result.full_response)

 # Try to post the transaction
 self.safe_post()

Tip

The safe_post() method is a
helper which tries to post the transaction, but on failure, it ignores
the attempt without an error. This is important as an error at this
stage would mean the transaction state being changed on the service
provider while tryton may not have the right status because the
error caused a rollback.

Capture

	
capture_authorize_net([card_info])

	Capture and complete the current transaction with the card
(if provided) or the
payment_profile.

	Parameters:	card_info – An instance of CreditCardView

	Raises UserError:

		If card and profile are missing.

This instance method receives the transaction to be authorized as its
instance (self) and optionally card_info if a card was entered for the
transaction to be processed. The card_info is available only when the
transaction processed using a card. Alternatively, a previously stored
payment profile could have been specified in the
payment_profile field:

def capture_authorize_net(self, card_info=None):
 """
 Capture using authorize.net for the specific transaction.

 :param card_info: An instance of CreditCardView
 """
 TransactionLog = Pool().get('payment_gateway.transaction.log')

 client = self.gateway.get_authorize_client()

 # A hack to inject the currency paramater into base_params of the
 # authorize sause transaction API since the implementation iself
 # does not offer a better way of handling currency
 client._transaction.base_params['x_currency_code'] = self.currency.code

 if card_info:
 cc = CreditCard(
 card_info.number,
 card_info.expiry_year,
 card_info.expiry_month,
 card_info.csc,
 card_info.owner,
)
 credit_card = client.card(cc)
 elif self.payment_profile:
 # A stored payment profile is used to process the transaction.
 # Use the saved card instead
 credit_card = client.saved_card(
 self.payment_profile.provider_reference
)
 else:
 self.raise_user_error('no_card_or_profile')

 try:
 result = credit_card.capture(self.amount)
 except AuthorizeResponseError, exc:
 self.state = 'failed'
 self.save()
 TransactionLog.serialize_and_create(self, exc.full_response)
 else:
 self.state = 'completed'
 self.provider_reference = str(result.uid)
 self.save()
 TransactionLog.serialize_and_create(self, result.full_response)
 self.safe_post()

Cancel

	
cancel_authorize_net()

	Cancel the current transaction authorization.

With authorize.net cancellation Voids a previous authorization that has not
yet been settled:

def cancel_authorize_net(self):
 """
 Cancel this authorization or request
 """
 TransactionLog = Pool().get('payment_gateway.transaction.log')

 if self.state != 'authorized':
 self.raise_user_error('cancel_only_authorized')

 client = self.gateway.get_authorize_client()
 client._transaction.base_params['x_currency_code'] = self.currency.code

 auth_net_transaction = client.transaction(self.provider_reference)

 # Try to void the transaction
 result = auth_net_transaction.void()

 # Mark the state as cancelled
 self.state = 'cancel'
 self.save()

 TransactionLog.serialize_and_create(self, result.full_response)

Step 3: Add support for payment profiles (Optional)

If the gateway you are writing supports storing confidential credit card
information for later use, the provider could be added to the supported
providers for maintaining payment profiles of parties.

The addition of a payment profile is expected to add the card to the
payment provider’s vault and return a unique reference to it which is
stored in provider_reference field.

Add provider to selection field

Extend the party.payment_profile.add_view model to add the provider
identifier as an option in the providers selection field:

class AddPaymentProfileView:
 __name__ = 'party.payment_profile.add_view'

 @classmethod
 def get_providers(cls):
 """
 Return the list of providers who support credit card profiles.
 """
 res = super(AddPaymentProfileView, cls).get_providers()
 res.append(('authorize_net', 'Authorize.net'))
 return res

Implement transition_add method

The AddPaymentProfile wizard offers a form to the user to fill
up confidential information which is then sent to the server.

The API requires that a transition_add_<provider_identifier> method be
available which should create the card on the payment provider’s server
and save the reference to the provider_reference.

A convenience method PaymentProfile.create_profile() creates a
new profile and returns the active record of the created profile, when
called with the payment provider’s reference as an argument:

class AddPaymentProfile:
 """
 Add a payment profile
 """
 __name__ = 'party.party.payment_profile.add'

 def transition_add_authorize_net(self):
 """
 Handle the case if the profile should be added for authorize.net
 """
 card_info = self.card_info

 client = card_info.gateway.get_authorize_client()
 cc = CreditCard(
 card_info.number,
 card_info.expiry_year,
 card_info.expiry_month,
 card_info.csc,
 card_info.owner,
)
 address = Address(
 card_info.address.street,
 card_info.address.city,
 card_info.address.zip,
 card_info.address.country.code,
)
 saved_card = AuthorizeCreditCard(
 client,
 credit_card=cc,
 address=address,
 email=card_info.party.email
)
 saved_card = saved_card.save()
 self.create_profile(saved_card.uid)

 return 'end'

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

API Reference

Payment Gateway Transaction

	copyright:	
	2013-2014 by Openlabs Technologies & Consulting (P) Ltd.

	license:	BSD, see LICENSE for more details

payment_gateway.gateway

	
transaction.PaymentGateway[source]

	alias of payment_gateway.gateway

Fields

	
PaymentGateway.name

	Define a char field (unicode).

	
PaymentGateway.journal

	Define many2one field (int).

	
PaymentGateway.provider

	Define a selection field (str).

	
PaymentGateway.method

	Define a selection field (str).

	
PaymentGateway.test

	Define a boolean field (True or False).

Methods

	
classmethod PaymentGateway.get_providers()[source]

	Downstream modules can add to the list

payment_gateway.transaction

	
transaction.PaymentTransaction[source]

	alias of payment_gateway.transaction

Fields

	
PaymentTransaction.uuid

	Define a char field (unicode).

	
PaymentTransaction.provider_reference

	Define a char field (unicode).

	
PaymentTransaction.date

	Define a date field (date).

	
PaymentTransaction.company

	Define many2one field (int).

	
PaymentTransaction.party

	Define many2one field (int).

	
PaymentTransaction.payment_profile

	Define many2one field (int).

	
PaymentTransaction.address

	Define many2one field (int).

	
PaymentTransaction.amount

	Define a numeric field (decimal).

	
PaymentTransaction.currency

	Define many2one field (int).

	
PaymentTransaction.gateway

	Define many2one field (int).

	
PaymentTransaction.provider

	Define function field (any).

	
PaymentTransaction.method

	Define function field (any).

	
PaymentTransaction.move

	Define many2one field (int).

	
PaymentTransaction.logs

	Define one2many field (list).

	
PaymentTransaction.state

	Define a selection field (str).

Methods

	
PaymentTransaction.safe_post()[source]

	If the initial configuration including defining a period and
journal is not completed, marking as done could fail. In
such cases, just mark as in-progress and let the user to
manually mark as done.

Failing would otherwise rollback transaction but its
not possible to rollback the payment

payment_gateway.transaction.log

	
transaction.TransactionLog[source]

	alias of payment_gateway.transaction.log

Methods

	
classmethod TransactionLog.serialize_and_create(transaction, data)[source]

	Serialise a given object and then save it as a log

	Parameters:	
	transaction – The transaction against which the log needs to be
saved

	data – The data object that needs to be saved

party.payment_profile

	
transaction.PaymentProfile[source]

	alias of party.payment_profile

Fields

	
PaymentProfile.party

	Define many2one field (int).

	
PaymentProfile.address

	Define many2one field (int).

	
PaymentProfile.gateway

	Define many2one field (int).

	
PaymentProfile.provider_reference

	Define a char field (unicode).

	
PaymentProfile.last_4_digits

	Define a char field (unicode).

	
PaymentProfile.expiry_month

	Define a selection field (str).

	
PaymentProfile.expiry_year

	Define an integer field (int).

Wizard: party.party.payment_profile.add

	
transaction.AddPaymentProfile[source]

	alias of party.party.payment_profile.add

Methods

	
AddPaymentProfile.create_profile(provider_reference)[source]

	A helper function that creates a profile from the card information
that was entered into the View of the wizard. This helper could be
called by the method which implement the API and wants to create the
profile with provider_reference.

	Parameters:	provider_reference – Value for the provider_reference field.

	Returns:	Active record of the created profile

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 transaction	

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	Tryton Payment Gateway 3.0.1.0dev1 documentation

Index

 A
 | C
 | D
 | E
 | G
 | J
 | L
 | M
 | N
 | P
 | S
 | T
 | U

A

 	

 	AddPaymentProfile (in module transaction)

 	address (transaction.PaymentProfile attribute)

 	

 	(transaction.PaymentTransaction attribute)

 	

 	amount (transaction.PaymentTransaction attribute)

 	authorize_authorize_net()

C

 	

 	cancel_authorize_net()

 	capture_authorize_net()

 	company (transaction.PaymentTransaction attribute)

 	

 	create_profile() (transaction.AddPaymentProfile method)

 	currency (transaction.PaymentTransaction attribute)

D

 	

 	date (transaction.PaymentTransaction attribute)

E

 	

 	expiry_month (transaction.PaymentProfile attribute)

 	

 	expiry_year (transaction.PaymentProfile attribute)

G

 	

 	gateway (transaction.PaymentProfile attribute)

 	

 	(transaction.PaymentTransaction attribute)

 	

 	get_providers() (transaction.PaymentGateway class method)

J

 	

 	journal (transaction.PaymentGateway attribute)

L

 	

 	last_4_digits (transaction.PaymentProfile attribute)

 	

 	logs (transaction.PaymentTransaction attribute)

M

 	

 	method (transaction.PaymentGateway attribute)

 	

 	(transaction.PaymentTransaction attribute)

 	

 	move (transaction.PaymentTransaction attribute)

N

 	

 	name (transaction.PaymentGateway attribute)

P

 	

 	party (transaction.PaymentProfile attribute)

 	

 	(transaction.PaymentTransaction attribute)

 	payment_profile (transaction.PaymentTransaction attribute)

 	PaymentGateway (in module transaction)

 	PaymentProfile (in module transaction)

 	

 	PaymentTransaction (in module transaction)

 	provider (transaction.PaymentGateway attribute)

 	

 	(transaction.PaymentTransaction attribute)

 	provider_reference (transaction.PaymentProfile attribute)

 	

 	(transaction.PaymentTransaction attribute)

S

 	

 	safe_post() (transaction.PaymentTransaction method)

 	serialize_and_create() (transaction.TransactionLog class method)

 	

 	settle_authorize_net()

 	state (transaction.PaymentTransaction attribute)

T

 	

 	test (transaction.PaymentGateway attribute)

 	transaction (module)

 	

 	TransactionLog (in module transaction)

U

 	

 	uuid (transaction.PaymentTransaction attribute)

 Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Tryton Payment Gateway 3.0.1.0dev1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Tryton Payment Gateway 3.0.1.0dev1 documentation »

 All modules for which code is available

		transaction

 © Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

_images/payment-profiles.png
|Q Search

Tryton - Administrator - Abc Inc [US Dollal

Payment Gatew... .. | Parties %}

< & Party
D . Configuration

D = Categories
P = Product
D . Financial
3 %Currency

>, Administration

+ | Parties

2/2

2L e ¢ &34 E

Name: |Sharoon Thomas Code: |2 Active:]

General | Accounting | Payment Profiles

Add payment profile

Payment Profiles

‘J':’f 4)‘ @/

| Expiry Month = Expiry Year |
02-February 2,016

Gateway | Last 4 digits
Credit Card - Authorize.net 1111

tryton://localhost:8000/product/model/party.party/2;views=%5B115%2C+114%5D

_images/payment-gateways-add.png
\ Search

b & Party
P = Product
v i Financial
v ... Configuration

~— Account Configurati
> [General Account
D [Fiscal Years
> | Journals
b [Taxes
> [Entries
> [Charts
p . Processing
> [Reporting
D % Currency

D Administration

Payment Gatew ...

Tryton - Administrator - Abc Inc [US Dollar]

7 Payment Gateways 4/4
LE])
j e ‘ ’ T4 @
Name: Credit Card - Authorize.net | Journal: |Cash | - | ‘_
Provider: |Authorize.net v ’ Method: |Credit Card - Authorize.net v ’

API

Test Account: [

Authorize.net Settings

Login: |327d¢

Transaction Key: |7L9pm4jE3

_images/payment-transaction-using-profile.png

_images/payment-transaction-use-card.png
Tryton - Administrator - Abc Inc [US Dollar]

Payment Gatew ... il

Vs Payment Gateway Transactions 1/1

1 +H~-EE I AR

UUID: (57a0c355-cd53-428c-a04b-63ff4d2dedea |

General | Other Information
Party: [it | @ Address: [John Doe, Abc Inc, 33137, Miami | @
Gateway: |Credit Card - Authorize.net | - | ’ Payment Profile: | | g | ’

Amount: 100.00 Currency: |US Dollar | w

Draft N ’ ‘ a Enter Credit Card

tryton://localhost:8000/product/model/payment_gateway.transaction/9;views=%5B231%2C+232%5D

_modules/transaction.html

 Navigation

 		
 index

 		
 modules |

 		Tryton Payment Gateway 3.0.1.0dev1 documentation »

 		Module code »

 Source code for transaction

-*- coding: utf-8 -*-
'''

 Payment Gateway Transaction

 :copyright: (c) 2013-2014 by Openlabs Technologies & Consulting (P) Ltd.
 :license: BSD, see LICENSE for more details

'''
from uuid import uuid4
from decimal import Decimal
from datetime import datetime

import yaml
from trytond.pool import Pool, PoolMeta
from trytond.pyson import Eval, If, Bool
from trytond.wizard import Wizard, StateView, StateTransition, \
 Button
from trytond.transaction import Transaction
from trytond.exceptions import UserError
from trytond.model import ModelSQL, ModelView, Workflow, fields

__all__ = [
 'PaymentGateway', 'PaymentGatewaySelf', 'PaymentTransaction',
 'TransactionLog', 'PaymentProfile', 'AddPaymentProfileView',
 'AddPaymentProfile', 'BaseCreditCardViewMixin', 'Party',
 'TransactionUseCardView', 'TransactionUseCard',
]
__metaclass__ = PoolMeta

READONLY_IF_NOT_DRAFT = {'readonly': Eval('state') != 'draft'}

[docs]class PaymentGateway(ModelSQL, ModelView):
 """
 Payment Gateway

 Payment gateway record is a specific configuration for a `provider`
 """
 __name__ = 'payment_gateway.gateway'

 name = fields.Char('Name', required=True, select=True)
 journal = fields.Many2One('account.journal', 'Journal', required=True)
 provider = fields.Selection('get_providers', 'Provider', required=True)
 method = fields.Selection(
 'get_methods', 'Method', required=True,
 selection_change_with=['provider']
)
 test = fields.Boolean('Test Account')

 @staticmethod
 def default_provider():
 return 'self'

 @classmethod
[docs] def get_providers(cls):
 """
 Downstream modules can add to the list
 """
 return []

 def get_methods(self):
 """
 Downstream modules can override the method and add entries to this
 """
 return []

class PaymentGatewaySelf:
 "COD, Cheque and Bank Transfer Implementation"
 __name__ = 'payment_gateway.gateway'

 @classmethod
 def get_providers(cls, values=None):
 """
 Downstream modules can add to the list
 """
 rv = super(PaymentGatewaySelf, cls).get_providers()
 self_record = ('self', 'Self')
 if self_record not in rv:
 rv.append(self_record)
 return rv

 def get_methods(self):
 if self.provider == 'self':
 return [
 ('cod', 'Cash On Delivery'),
 ('cheque', 'Cheque'),
]
 return super(PaymentGatewaySelf, self).get_methods()

[docs]class PaymentTransaction(Workflow, ModelSQL, ModelView):
 '''Gateway Transaction'''
 __name__ = 'payment_gateway.transaction'

 uuid = fields.Char('UUID', required=True, readonly=True)
 provider_reference = fields.Char(
 'Provider Reference', readonly=True, states={
 'invisible': Eval('state') == 'draft'
 }, depends=['state']
)
 date = fields.Date(
 'Date', required=True,
 states=READONLY_IF_NOT_DRAFT,
 depends=['state']
)
 company = fields.Many2One(
 'company.company', 'Company', required=True,
 states=READONLY_IF_NOT_DRAFT, select=True,
 domain=[
 ('id', If(Eval('context', {}).contains('company'), '=', '!='),
 Eval('context', {}).get('company', -1)),
], depends=['state']
)
 party = fields.Many2One(
 'party.party', 'Party', required=True,
 on_change=['party'], ondelete='RESTRICT',
 depends=['state'], states=READONLY_IF_NOT_DRAFT,
)
 payment_profile = fields.Many2One(
 'party.payment_profile', 'Payment Profile',
 domain=[
 ('party', '=', Eval('party')),
 ('gateway', '=', Eval('gateway')),
],
 on_change=['payment_profile'],
 ondelete='RESTRICT',
 depends=['state', 'party', 'gateway'],
 states=READONLY_IF_NOT_DRAFT,
)
 address = fields.Many2One(
 'party.address', 'Address', required=True,
 domain=[('party', '=', Eval('party'))],
 depends=['state', 'party'], states=READONLY_IF_NOT_DRAFT,
 ondelete='RESTRICT'
)
 amount = fields.Numeric(
 'Amount', digits=(16, Eval('currency_digits', 2)),
 required=True, depends=['state', 'currency_digits'],
 states=READONLY_IF_NOT_DRAFT,
)
 currency = fields.Many2One(
 'currency.currency', 'Currency',
 required=True,
 depends=['state'], states=READONLY_IF_NOT_DRAFT,
)
 currency_digits = fields.Function(
 fields.Integer(
 'Currency Digits', on_change_with=['currency']
), 'on_change_with_currency_digits'
)
 gateway = fields.Many2One(
 'payment_gateway.gateway', 'Gateway', required=True,
 states=READONLY_IF_NOT_DRAFT, depends=['state'],
 ondelete='RESTRICT', on_change=['gateway']
)
 provider = fields.Function(
 fields.Char('Provider'), 'get_provider'
)
 method = fields.Function(
 fields.Char('Payment Gateway Method'), 'get_method'
)
 move = fields.Many2One(
 'account.move', 'Move', readonly=True, ondelete='RESTRICT'
)
 logs = fields.One2Many(
 'payment_gateway.transaction.log', 'transaction',
 'Logs', depends=['state'], states={
 'readonly': Eval('state') in ('done', 'cancel')
 }
)
 state = fields.Selection([
 ('draft', 'Draft'),
 ('in-progress', 'In Progress'),
 ('failed', 'Failed'),
 ('authorized', 'Authorized'),
 ('completed', 'Completed'),
 ('posted', 'Posted'),
 ('cancel', 'Canceled'),
], 'State', readonly=True)

 def get_rec_name(self, name=None):
 """
 Return the most meaningful rec_name
 """
 if self.state == 'draft':
 return self.uuid
 if not self.payment_profile:
 return '%s/%s' % (self.gateway.name, self.provider_reference)
 return '%s/%s' % (
 self.payment_profile.rec_name, self.provider_reference
)

 @classmethod
 def __setup__(cls):
 super(PaymentTransaction, cls).__setup__()
 cls._order.insert(0, ('date', 'DESC'))

 cls._error_messages.update({
 'feature_not_available': 'The feature %s is not avaialable '
 'for provider %s',
 })
 cls._transitions |= set((
 ('draft', 'in-progress'),
 ('draft', 'authorized'),
 ('in-progress', 'failed'),
 ('in-progress', 'authorized'),
 ('in-progress', 'completed'),
 ('in-progress', 'cancel'),
 ('failed', 'in-progress'),
 ('authorized', 'cancel'),
 ('authorized', 'completed'),
 ('completed', 'posted'),
))
 cls._buttons.update({
 'cancel': {
 'invisible': ~Eval('state').in_(['in-progress', 'authorized']),
 },
 'authorize': {
 'invisible': ~(
 (Eval('state') == 'draft') &
 Eval('payment_profile', True)
),
 },
 'settle': {
 'invisible': ~(Eval('state') == 'authorized'),
 },
 'retry': {
 'invisible': ~(Eval('state') == 'failed'),
 },
 'capture': {
 'invisible': ~(
 (Eval('state') == 'draft') & Eval('payment_profile', True)
),
 },
 'post': {
 'invisible': ~(Eval('state') == 'completed'),
 },
 'use_card': {
 'invisible': ~(
 (Eval('state') == 'draft') &
 ~Bool(Eval('payment_profile')) &
 (Eval('method') == 'credit_card')
),
 },
 'update_status': {
 'invisible': ~Eval('state').in_(['in-progress'])
 }
 })

 @staticmethod
 def default_uuid():
 return unicode(uuid4())

 @staticmethod
 def default_date():
 Date = Pool().get('ir.date')
 return Date.today()

 @staticmethod
 def default_company():
 return Transaction().context.get('company')

 @staticmethod
 def default_currency():
 Company = Pool().get('company.company')
 if Transaction().context.get('company'):
 company = Company(Transaction().context['company'])
 return company.currency.id

 @staticmethod
 def default_state():
 return 'draft'

 @classmethod
 def copy(cls, records, default=None):
 if default is None:
 default = {}
 default.update({
 'uuid': cls.default_uuid(),
 'provider_reference': None,
 'move': None,
 'logs': None,
 })
 return super(PaymentTransaction, cls).copy(records, default)

 def on_change_with_currency_digits(self, name=None):
 if self.currency:
 return self.currency.digits
 return 2

 def on_change_party(self):
 res = {
 'address': None,
 }
 if self.party:
 try:
 address = self.party.address_get(type='invoice')
 except AttributeError:
 # account_invoice module is not installed
 pass
 else:
 res['address'] = address.id
 res['address.rec_name'] = address.rec_name
 return res

 def on_change_payment_profile(self):
 res = {}
 if self.payment_profile:
 res['address'] = self.payment_profile.address.id
 res['address.rec_name'] = self.payment_profile.address.rec_name
 return res

 def get_provider(self):
 """
 Return the gateway provider based on the gateway
 """
 return self.gateway.provider

 def get_method(self, name=None):
 """
 Return the method based on the gateway
 """
 return self.gateway.method

 def on_change_gateway(self):
 if self.gateway:
 return {
 'provider': self.gateway.provider,
 'method': self.gateway.method,
 }

 def on_change_with_provider(self):
 return self.get_provider()

 @classmethod
 @ModelView.button
 @Workflow.transition('cancel')
 def cancel(cls, transactions):
 for transaction in transactions:
 method_name = 'cancel_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available',
 ('cancellation', transaction.gateway.provider),
)
 getattr(transaction, method_name)()

 @classmethod
 @ModelView.button
 @Workflow.transition('in-progress')
 def authorize(cls, transactions):
 for transaction in transactions:
 method_name = 'authorize_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available',
 ('authorization', transaction.gateway.provider),
)
 getattr(transaction, method_name)()

 @classmethod
 @ModelView.button
 @Workflow.transition('in-progress')
 def retry(cls, transactions):
 for transaction in transactions:
 method_name = 'retry_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available',
 ('retry', transaction.gateway.provider)
)
 getattr(transaction, method_name)()

 @classmethod
 @ModelView.button
 @Workflow.transition('completed')
 def settle(cls, transactions):
 for transaction in transactions:
 method_name = 'settle_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available',
 ('settle', transaction.gateway.provider)
)
 getattr(transaction, method_name)()

 @classmethod
 @ModelView.button
 @Workflow.transition('in-progress')
 def capture(cls, transactions):
 for transaction in transactions:
 method_name = 'capture_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available',
 ('capture', transaction.gateway.provider)
)
 getattr(transaction, method_name)()

 @classmethod
 @ModelView.button
 @Workflow.transition('posted')
 def post(cls, transactions):
 """
 Complete the transactions by creating account moves and post them.

 This method is likely to end in failure if the initial configuration
 of the journal and fiscal periods have not been done. You could
 alternatively use the safe_post instance method to try to post the
 record, but ignore the error silently.
 """
 for transaction in transactions:
 if not transaction.move:
 transaction.create_move()

 @classmethod
 @ModelView.button
 def update_status(cls, transactions):
 """
 Check the status with the payment gateway provider and update the
 status of this transaction accordingly.
 """
 for transaction in transactions:
 method_name = 'update_%s' % transaction.gateway.provider
 if not hasattr(transaction, method_name):
 cls.raise_user_error(
 'feature_not_available'
 ('update status', transaction.gateway.provider)
)
 getattr(transaction, method_name)()

[docs] def safe_post(self):
 """
 If the initial configuration including defining a period and
 journal is not completed, marking as done could fail. In
 such cases, just mark as in-progress and let the user to
 manually mark as done.

 Failing would otherwise rollback transaction but its
 not possible to rollback the payment
 """
 try:
 self.post([self])
 except UserError, exc:
 log = 'Could not mark as done\n'
 log += unicode(exc)
 TransactionLog.create([{
 'transaction': self,
 'log': log
 }])

 def create_move(self, date=None):
 """
 Create the account move for the payment

 :param date: Optional date for the account move
 :return: Active record of the created move
 """
 Currency = Pool().get('currency.currency')
 Period = Pool().get('account.period')
 Move = Pool().get('account.move')

 journal = self.gateway.journal
 date = date or self.date

 if not journal.debit_account:
 self.raise_user_error('missing_debit_account', (journal.rec_name,))

 period_id = Period.find(self.company.id, date=date)

 amount_second_currency = second_currency = None
 amount = self.amount

 if self.currency != self.company.currency:
 amount = Currency.compute(
 self.currency, self.amount, self.company.currency
)
 amount_second_currency = self.amount
 second_currency = self.currency

 lines = [{
 'description': self.rec_name,
 'account': self.party.account_receivable.id,
 'party': self.party.id,
 'debit': Decimal('0.0'),
 'credit': amount,
 'amount_second_currency': amount_second_currency,
 'second_currency': second_currency,
 }, {
 'description': self.rec_name,
 'account': journal.debit_account.id,
 'party': self.party.id,
 'debit': amount,
 'credit': Decimal('0.0'),
 'amount_second_currency': amount_second_currency,
 'second_currency': second_currency,
 }]

 move, = Move.create([{
 'journal': journal.id,
 'period': period_id,
 'date': date,
 'lines': [('create', lines)],
 }])
 Move.post([move])

 # Set the move as the move of this transaction
 self.move = move
 self.save()

 return move

 @classmethod
 @ModelView.button_action('payment_gateway.wizard_transaction_use_card')
 def use_card(cls, transactions):
 pass

[docs]class TransactionLog(ModelSQL, ModelView):
 "Transaction Log"
 __name__ = 'payment_gateway.transaction.log'

 timestamp = fields.DateTime('Event Timestamp', readonly=True)
 transaction = fields.Many2One(
 'payment_gateway.transaction', 'Transaction',
 required=True, readonly=True,
)
 is_system_generated = fields.Boolean('Is System Generated')
 log = fields.Text(
 'Log', required=True, depends=['is_system_generated'],
 states={'readonly': Eval('is_system_generated', True)}
)

 @staticmethod
 def default_is_system_generated():
 return False

 @staticmethod
 def default_timestamp():
 return datetime.utcnow()

 @classmethod
[docs] def serialize_and_create(cls, transaction, data):
 """
 Serialise a given object and then save it as a log

 :param transaction: The transaction against which the log needs to be
 saved
 :param data: The data object that needs to be saved
 """
 return cls.create([{
 'transaction': transaction,
 'log': yaml.dump(data, default_flow_style=False),
 }])[0]

class BaseCreditCardViewMixin(object):
 """
 A Reusable Mixin class to get Credit Card view
 """
 owner = fields.Char('Card Owner', required=True)
 number = fields.Char('Card Number', required=True)
 expiry_month = fields.Selection([
 ('01', '01-January'),
 ('02', '02-February'),
 ('03', '03-March'),
 ('04', '04-April'),
 ('05', '05-May'),
 ('06', '06-June'),
 ('07', '07-July'),
 ('08', '08-August'),
 ('09', '09-September'),
 ('10', '10-October'),
 ('11', '11-November'),
 ('12', '12-December'),
], 'Expiry Month', required=True)
 expiry_year = fields.Integer('Expiry Year', required=True)
 csc = fields.Integer('Card Security Code (CVV/CVD)', help='CVD/CVV/CVN')

 @staticmethod
 def default_owner():
 """
 If a party is provided in the context fill up this instantly
 """
 Party = Pool().get('party.party')

 party_id = Transaction().context.get('party')
 if party_id:
 return Party(party_id).name

class Party:
 __name__ = 'party.party'

 payment_profiles = fields.One2Many(
 'party.payment_profile', 'party', 'Payment Profiles'
)

 @classmethod
 def __setup__(cls):
 super(Party, cls).__setup__()
 cls._buttons.update({
 'add_payment_profile': {}
 })

 @classmethod
 @ModelView.button_action('payment_gateway.wizard_add_payment_profile')
 def add_payment_profile(cls, parties):
 pass

[docs]class PaymentProfile(ModelSQL, ModelView):
 """
 Secure Payment Profile

 Several payment gateway service providers offer a secure way to store
 confidential customer credit card insformation on their server.
 Transactions can then be processed against these profiles without the need
 to recollect payment information from the customer, and without the need
 to store confidential credit card information in Tryton.

 This model represents a profile thus stored with any of the third party
 providers.
 """
 __name__ = 'party.payment_profile'

 party = fields.Many2One('party.party', 'Party', required=True)
 address = fields.Many2One(
 'party.address', 'Address', required=True,
 domain=[('party', '=', Eval('party'))], depends=['party']
)
 gateway = fields.Many2One(
 'payment_gateway.gateway', 'Gateway', required=True,
 ondelete='RESTRICT', readonly=True,
)
 provider_reference = fields.Char(
 'Provider Reference', required=True, readonly=True
)
 last_4_digits = fields.Char('Last 4 digits', readonly=True)
 expiry_month = fields.Selection([
 ('01', '01-January'),
 ('02', '02-February'),
 ('03', '03-March'),
 ('04', '04-April'),
 ('05', '05-May'),
 ('06', '06-June'),
 ('07', '07-July'),
 ('08', '08-August'),
 ('09', '09-September'),
 ('10', '10-October'),
 ('11', '11-November'),
 ('12', '12-December'),
], 'Expiry Month', required=True)
 expiry_year = fields.Integer('Expiry Year', required=True)

 def get_rec_name(self, name=None):
 if self.last_4_digits:
 return self.gateway.name + ('xxxx ' * 3) + self.last_4_digits
 return 'Incomplete Card'

class AddPaymentProfileView(BaseCreditCardViewMixin, ModelView):
 """
 View for adding a payment profile
 """
 __name__ = 'party.payment_profile.add_view'

 party = fields.Many2One(
 'party.party', 'Party', required=True,
 states={'invisible': Eval('party_invisible', False)}
)
 address = fields.Many2One(
 'party.address', 'Address', required=True,
 domain=[('party', '=', Eval('party'))],
 depends=['party']
)
 provider = fields.Selection('get_providers', 'Provider', required=True)
 gateway = fields.Many2One(
 'payment_gateway.gateway', 'Gateway', required=True,
 domain=[('provider', '=', Eval('provider'))],
 depends=['provider']
)

 @classmethod
 def get_providers(cls):
 """
 Return the list of providers who support credit card profiles.
 """
 return []

[docs]class AddPaymentProfile(Wizard):
 """
 Add a payment profile
 """
 __name__ = 'party.party.payment_profile.add'

 start_state = 'card_info'

 card_info = StateView(
 'party.payment_profile.add_view',
 'payment_gateway.payment_profile_add_view_form',
 [
 Button('Cancel', 'end', 'tryton-cancel'),
 Button('Add', 'add', 'tryton-ok', default=True)
]
)
 add = StateTransition()

 def default_card_info(self, fields):
 Party = Pool().get('party.party')

 party = Party(Transaction().context.get('active_id'))

 res = {'party': party.id}

 try:
 address = self.party.address_get(type='invoice')
 except AttributeError:
 # account_invoice module is not installed
 pass
 else:
 res['address'] = address.id

 return res

[docs] def create_profile(self, provider_reference):
 """
 A helper function that creates a profile from the card information
 that was entered into the View of the wizard. This helper could be
 called by the method which implement the API and wants to create the
 profile with provider_reference.

 :param provider_reference: Value for the provider_reference field.
 :return: Active record of the created profile
 """
 Profile = Pool().get('party.payment_profile')

 profile = Profile(
 party=self.card_info.party.id,
 address=self.card_info.address.id,
 gateway=self.card_info.gateway.id,
 last_4_digits=self.card_info.number[-4:],
 expiry_month=self.card_info.expiry_month,
 expiry_year=self.card_info.expiry_year,
 provider_reference=provider_reference,
)
 profile.save()
 return profile

 def transition_add(self):
 """
 Downstream module implementing the functionality should check for the
 provider type and handle it accordingly.

 To handle, name your method transition_add_<provider_name>. For example
 if your proivder internal name is paypal, then the method name
 should be `transition_add_paypal`

 Once validated, the payment profile must be created by the method.

 A helper function is provided in this class itself which fills in most
 of the information automatically and the only additional information
 required is the reference from the payment provider.
 """
 method_name = 'transition_add_%s' % self.card_info.provider
 return getattr(self, method_name)()

class TransactionUseCardView(BaseCreditCardViewMixin, ModelView):
 """
 View for putting in credit card information
 """
 __name__ = 'payment_gateway.transaction.use_card.view'

class TransactionUseCard(Wizard):
 """
 Add a payment profile
 """
 __name__ = 'payment_gateway.transaction.use_card'

 start_state = 'card_info'

 card_info = StateView(
 'payment_gateway.transaction.use_card.view',
 'payment_gateway.transaction_use_card_view_form',
 [
 Button('Cancel', 'end', 'tryton-cancel'),
 Button('Authorize', 'authorize', 'tryton-go-next'),
 Button('Capture', 'capture', 'tryton-ok', default=True),
]
)
 capture = StateTransition()
 authorize = StateTransition()

 def transition_capture(self):
 """
 Delegates to the capture method for the provider in
 payment_gateway.transaction
 """
 PaymentTransaction = Pool().get('payment_gateway.transaction')

 transaction = PaymentTransaction(
 Transaction().context.get('active_id')
)

 getattr(transaction, 'capture_%s' % transaction.gateway.provider)(
 self.card_info
)

 return 'end'

 def transition_authorize(self):
 """
 Delegates to the authorize method for the provider in
 payment_gateway.transaction
 """
 PaymentTransaction = Pool().get('payment_gateway.transaction')

 transaction = PaymentTransaction(
 Transaction().context.get('active_id')
)

 getattr(transaction, 'authorize_%s' % transaction.gateway.provider)(
 self.card_info
)

 return 'end'

 © Copyright 2014, Openlabs.
 Created using Sphinx 1.1.3.

